f07 — Linear Equations (LAPACK) f07qre

NAG C Library Function Document

nag_zsptrf (f07qrc)

1 Purpose

nag_zsptrf (f07qrc) computes the Bunch—Kaufman factorization of a complex symmetric matrix, using
packed storage.

2 Specification

void nag_zsptrf (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex apl[],
Integer ipiv[], NagError *fail)

3 Description

nag_zsptrf (f07qrc) factorizes a complex symmetric matrix A, using the Bunch—Kaufman diagonal pivoting
method and packed storage. A is factorized as either A = PUDUTPT if uplo = Nag_Upper, or
A= PLDL"P" if uplo = Nag_Lower, where P is a permutation matrix, U (or L) is a unit upper (or
lower) triangular matrix and D is a symmetric block diagonal matrix with 1 by 1 and 2 by 2 diagonal
blocks; U (or L) has 2 by 2 unit diagonal blocks corresponding to the 2 by 2 blocks of D. Row and
column interchanges are performed to ensure numerical stability while preserving symmetry.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored and how A is to be
factorized, as follows:

if uplo = Nag_Upper, the upper triangular part of A is stored and A is factorized as
PUDUT P”, where U is upper triangular;

if uplo = Nag_Lower, the lower triangular part of A is stored and A is factorized as
PLDLTP', where L is lower triangular.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

[NP3645/7] f07qre.1

f07qre NAG C Library Manual

4: ap[dim] — Complex Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).
On entry: the n by n symmetric matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:
if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +i — 1], for i < j;
if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 41 — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ap[(2n —4) x (i —1)/2 4 j — 1], for i < j;
if order = Nag_RowMajor and uplo = Nag_Lower,
a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.
On exit: A is overwritten by details of the block diagonal matrix D and the multipliers used to
obtain the factor U or L as specified by uplo.
5: ipiv[dim| — Integer Output
Note: the dimension, dim, of the array ipiv must be at least max(1,n).
On exit: details of the interchanges and the block structure of D.
More precisely, if ipiv[i — 1] =k > 0, d;; is a 1 by 1 pivot block and the ith row and column of A
were interchanged with the kth row and column.
If uplo = Nag_Upper and ipiv[i — 2] = ipiv[i — 1] = =1 < 0, <dzl_1’i_1 dg_l > is a 2 by 2 pivot
ii—1 i
block and the (i — 1)th row and column of A were interchanged with the /th row and column.
If uplo = Nag_Lower and ipiv[i — 1] = ipiv[i]] = —m < 0, (di dii > is a 2 by 2 pivot
divri dit1in
block and the (i + 1)th row and column of A were interchanged with the mth row and column.
6: fail — NagError * Output
The NAG error parameter (see the Essential Introduction).
6 Error Indicators and Warnings
NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_SINGULAR

The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f07grc.2 [NP3645/7]

f07 — Linear Equations (LAPACK) f07qre

7 Accuracy

If uplo = Nag_Upper, the computed factors U and D are the exact factors of a perturbed matrix A + F,
where

|| < c(n)eP|U||D|[U"|P",
c(n) is a modest linear function of n, and € is the machine precision.

If uplo = Nag Lower, a similar statement holds for the computed factors L and D.

8 Further Comments

The elements of D overwrite the corresponding elements of A; if D has 2 by 2 blocks, only the upper or
lower triangle is stored, as specified by uplo.

The unit diagonal elements of U or L and the 2 by 2 unit diagonal blocks are not stored. The remaining
elements of U or L overwrite elements in the corresponding columns of A, but additional row interchanges
must be applied to recover U or L explicitly (this is seldom necessary). If ipiv[i — 1] =i, for
i=1,2,...,n, then U or L are stored explicitly in packed form (except for their unit diagonal elements
which are equal to 1).

The total number of real floating-point operations is approximately %n3.
A call to this function may be followed by calls to the functions:
nag_zsptrs (f07qgsc) to solve AX = B;
nag_zspcon (f07quc) to estimate the condition number of A;
nag_zsptri (f07qwc) to compute the inverse of A.

The real analogue of this function is nag_dsptrf (f07pdc).

9 Example

To compute the Bunch—Kaufman factorization of the matrix A, where

—0.39 - 0.712 5.14—-0.64: —7.86 —2.96¢ 3.80 +0.92¢
5.14 — 0.64¢ 8.86 4 1.817 —3.52+0.58¢ 532 —-1.59%

—7.86 —2.96i —3.52+4+0.58; —2.83 -0.03: —1.54—-2.86i |’
3.8040.92¢ 532—-1.59 —1.54—-2.86¢i —0.56+0.12¢

A:

using packed storage.

9.1 Program Text

/* nag_zsptrf (f07grc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/
Integer ap_len, i, j, n;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;

[NP3645/7] f07qre.3

f07qre NAG C Library Manual

Nag_OrderType order;

/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *ap=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]

#define A _LOWER(I,J) apl[(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order Nag_RowMajor;

#endif

=g

INIT_FAIL(fail);
Vprintf ("f07grc Example Program Results\n\n");

/* Skip heading in data file =*/
Vscanf ("$*[*\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
ap_len = n x (n + 1)/2;

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||
! (ap = NAG_ALLOC(ap_len, Complex)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A from data file x/
Vscanf (" ' %1s ’'%*[*"\n] ", uplo);

if (*(unsigned char #*)uplo == 'L’)
uplo_enum = Nag_Lower ;
else if (*(unsigned char #*)uplo == 'U’)
uplo_enum = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo_enum == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1i; j <= n; ++3j)
Vscanf (" (%1f , %1f)", &A_UPPER(i,j).re, &A_UPPER(i,j).im);
}
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (j = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A_LOWER(i,]j).re, &A_LOWER(i,j).im);
¥
Vscanf ("sx[*\n] ");
3

/* Factorize A */
fO07qgrc(order, uplo_enum, n, ap, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7grc.\n%s\n", fail.message);
exit_status = 1;
goto END;

f07gre.4 [NP3645/7]

f07 — Linear Equations (LAPACK)

}

/* Print details of factorization #*/

x04ddc (order, uplo_enum, Nag_NonUnitDiag, n,
Nag_BracketForm, "%7.4f",
0, Nag_IntegerLabels, O,

ap,
"Factor", Nag_IntegerLabels,
80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04ddc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print pivot indices x/
Vprintf ("\nIPIV\n") ;
for (i 1; i <= n;
Vprintf ("%61d%s",
Vprintf ("\n") ;

++1)
ipiv([i-11,

i%7==0 2"\n":"

")

END:
if (ipiv) NAG_FREE (ipiv) ;
if (ap) NAG_FREE (ap);
return exit_status;

}

9.2 Program Data

f07qgrc Example Program Data

4
IUI
(-0.39,-0.71) (5.14,-0.64) (-7.86,-2.96) (3.80, 0.92)
(8.86, 1.81) (-3.52, 0.58) (5.32,-1.59)
(-2.83,-0.03) (-1.54,-2.86)
(-0.56, 0.12)

9.3 Program Results

fO07qrc Example Program Results

Factor
1 2 3

1 (-0.3900,-0.7100) (=7.8600,-2.9600) (0.5279,-0.3715) (
2 (-2.8300,-0.0300) (-0.6078, 0.2811) (-
3 (4.4079, 5.3991) (-
4 (-
IPIV

-3 -3 3 4

0
0
0
2

f07qre

:Value of N
:Value of UPLO

:End of matrix A

.4426, 0.1936
.4823, 0.0150
.1071,-0.3157

4
)
)
)
.0954,-2.2011)

[NP3645/7]

f07qre.5 (last)

	f07qrc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

